

# International Journal of Current Research and Academic Review

ISSN: 2347-3215 Volume 3 Number 8 (August-2015) pp. 208-228 www.ijcrar.com



## FT-IR and FT-Raman spectra, HOMO, LUMO, first-order hyperpolarizability and NMR analysis of salicylosalicylic acid based on density functional calculations

V. Krishna Kumar<sup>1</sup>, S.Suganya<sup>2</sup>\*, R.Mathammal<sup>3</sup> and M.Kumar<sup>4</sup>

<sup>1</sup>Department of Physics, Periyar University, Salem-636 011, India <sup>2</sup>Department of Physics, N.K.R. Govt. Arts College (W), Namakkal-637 001, India <sup>3</sup>Department of Physics, Sri Sarada College for Women (Autonomous) Salem-636 016, India <sup>4</sup>Department of Physics, Govt. Arts College (Autonomous), Salem-636 007, India

\*Corresponding author

| KEYWORDS                                                                                                         | ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Salicylosalicylic<br>Acid, HOMO,<br>LUMO,<br><sup>13</sup> CNMR and<br><sup>1</sup> HNMR,<br>Hyperpolarizability | In the present work, the infrared (IR) and Raman spectra of Salicylosalicylic Acid (abbreviated as SCSA) have been measured in the ranges of 400–4000cm <sup>-1</sup> and 50–4000cm <sup>-1</sup> . Optimized geometrical structures, vibrational frequencies, intensities, Mullikan atomic charges and other thermodynamical parameters have been computed by the B3 based (B3LYP) density functional methods using 6-31G*(d,p) basis sets. Reliable vibrational assignments were made on the basis of total energy distribution (TED) calculated with scaled quantum mechanical (SQM) method. The scaled frequencies resulted in excellent agreement with the observed spectral patterns. Lower value in the HOMO and LUMO energy gap explains the eventual charge transfer interactions taking place within the molecule. <sup>13</sup> C and <sup>1</sup> H NMR chemical shifts results were also calculated and compared with the experimental values. The values of electric dipole moment ( $\mu$ ) and the first-order Hyperpolarizability ( $\beta$ ) were computed using DFT calculations. |

## Introduction

Computational studies seem to constitute a valuable tool in pharmaceutical solid-state research. The theory has to be supported by spectroscopic and diffraction different Among vibrational methods. them, spectroscopy is one of the most commonly used for the molecular structure determination.

Quantum chemical computational methods have proven to be an essential tool for interpreting and predicting the vibrational spectra (Hess *et al.*, 1986; Pulay *et al.*, 1993; Hehre *et al.*, 1986; Shin *et al.*, 1998). A significant advancement in this area was made by combining semi-empirical quantum mechanical method; ab initio quantum mechanical method and density functional theory (DFT), each method having its own advantages (Hehre *et al.*, 1986; Shin *et al.*, 1998; Ziegler, 1991; Blom and Altona, 1976). The aim of this work is to study vibrational (FT-IR, FT-Raman and NMR) spectra and investigated the optimized geometry, atomic charges and vibrational spectra for the title molecules.

Salicylosalicylic acid contains both a hydroxyl and a carboxyl group. Salicylosalicylic acid has also been shown to activate adenosine monophosphate-activated protein kinase (AMPK), and it is thought that this action may play a role in the anticancer effects of the compound and its prodrugs aspirin and salsalate. In the antidiabetic effects addition. of Salicylosalicylic acid are likely mediated by activation primarily AMPK through allosteric conformational change that increases levels of phosphorylation (Hawley al., 2012). As а consequence, et Salicylosalicylic acid may alter AMPK activity and subsequently exert its antidiabetic properties through altered energy status of the cell. Salicylosalicylic acid has strong antiseptic and germicidal properties because it is a carboxylated phenol. The presence of the carboxyl group appears to enhance the antiseptic property. Many hair tonics and remedies for athlete's foot, corns and warts employ the keratolytic action of Salicylosalicylic acid.

The present work deals with DFT (B3LYP) methods with 6-31G\* (d) and 6-31G\* (d, p) basis sets using the Gaussian 03W program. We report IR, Raman and <sup>1</sup>H, <sup>13</sup>C NMR spectroscopic data, HOMO, LUMO and hyperpolarizability of Salicylosalicylic Acid by using DFT/6-31G\*(d, p) method. Therefore, we have carried out detailed theoretical and experimental investigation on the vibrational spectra of this molecule completely.

#### Experimental

The compound under investigation namely Salicylosalicylic acid is purchased from the Lancaster Chemical Company (UK), which is of spectroscopic grade and hence used for recording the spectra as such without any further purification. Fourier transform infrared spectra of the title compound is measured at the room temperature in the 4000-400cm<sup>-1</sup> region using BRUKER IFS 66V FTIR spectrometer at a resolution of  $\pm 1$ cm<sup>-1</sup> equipped with a cooled MCT detector, a KBr beam splitter. The FT-Raman spectrum of SCSA has been recorded using 1064nm line of Nd:YAG laser as excitation wavelength in the region 50-4000 cm<sup>-1</sup> on a BRUKER IFS66v spectrophotometer using KBr pellet technique. The reported wavenumbers are believed to accurate within  $\pm$  cm<sup>-1</sup>.<sup>1</sup>H and <sup>13</sup>C nuclear magnetic resonance (NMR) (400 MHz; CDCl<sub>3</sub>) spectra were recorded on a Bruker HC400 instrument. All NMR spectra are measured at room temperature.

#### **Computational details**

The most optimized structural parameters, energy, and vibrational frequencies of the molecule have been calculated by using B3 exchange (Becke. 1988) functional combined with the LYP (Lee et al., 1988) correlation functional resulting in the B3LYP density functional method at 6-31G (d, p) basis set. The optimum geometry is determined by minimizing the energy with respect to all geometry parameters without imposing molecular symmetry constraints. representation The Cartesian of the force constants theoretical has been computed at the optimized geometry by the assumption that the molecule belong to  $C_1$ point group symmetry. All the computations were performed using Gaussian 03W program (Frisch et al., 2004) and GaussView molecular visualization program package on the personal computer (Frisch *et al.*, 2007). Multiple scaling of the force field has been performed by the SQM procedure (Rauht and Pulay, 1995; Pulay *et al.*, 1983) to offset the systematic errors caused by basis set incompleteness, neglect of electron correlation and vibrational anharmonicity, the characterization of the normal modes using potential energy distribution (PED) was done with the MOLVIB – 7.0 programs (Sundius, 1990; Sundius, 2002).

The <sup>13</sup>C and <sup>1</sup>H nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method (Wolinski et al., 1990) at B3LYP method with 6-31G\* basis set. The experimental values for <sup>1</sup>H and <sup>13</sup>C isotropic chemical shifts for TMS were 13.84 and 188.1ppm, respectively (Cheeseman et al., 1996). Furthermore, in order to show nonlinear optic (NLO) activity of title molecule, the dipole moment, linear polarizability and first hyperpolarizability were obtained

The Raman activity (Si) calculated by Gaussian 03 and adjusted during scaling procedure with MOLVIB were converted to relative Raman intensity (Ii) using the following relation from the basic theory of Raman scattering (Polavarapu, 1990; Keresztury *et al.*, 1993).

$$I_i = \frac{f(\upsilon_o - \upsilon_i)^4 S_i}{\upsilon_i \left[1 - \exp\left(\frac{-hc \upsilon_i}{|c|^T}\right)\right]}$$

Where  $v_o$  is the exciting wave number (in cm<sup>-1</sup> units),  $v_i$  the vibrational wave number of the i<sup>th</sup> normal mode, h, c, and k are the universal constants and f is a suitably chosen common normalization factor for all peak intensities. For the plots of simulated IR and

Raman spectra, pure Lorentzian band shapes were used with a bandwidth (FWHM) of 10  $cm^{-1}$ .

## **Results and Discussion**

#### **Structural properties**

In order to find the molecular structure along with numbering of atom of Salicylosalicylic acid (SCSA) is obtained from Gaussian 2003 and Gauss view programs which are shown in figure 1. The optimized geometrical parameters of SCSA obtained using the DFT level of theory are presented in table 1 and the corresponding minimum energy was calculated to be E=-915.68208Hartees.The calculated parameters are slightly higher or lower than the experimental values due to the absence of extended hydrogen bonding or the intermolecular stacking interaction in the absolute vacuum. The title compound SCSA belongs to  $C_1$  point group symmetry with 29 atoms. With the electron withdrawing substituents on the benzene ring, the symmetry of the ring is distorted, yielding ring angles smaller than 120° at the point of substitution and slightly larger than  $120^{\circ}$  at the other positions (Wang et al., 1993). The C17-C26 bond length of SCSA is also longer, where the -COOH group is attached. This is due to the electron withdrawing nature of carboxylic acid group.

#### Vibrational assignments

The maximum number of potentially active observable fundamentals of a non-linear molecule, which contains N atoms, is equal to (3N-6) apart from three translational and three rotational degrees of freedom (Silverstein *et al.*, 1981; Wilson *et al.*, 1980). Hence, SCSA molecule has 29 atoms with 81 normal modes of vibrations and considered under  $C_1$  point group symmetry.

The Eighty-one normal modes of vibrations of SCSA molecule are distributed by symmetry species as:

 $\Gamma Vib = 55 A (in-plane) + 26 A (out-of-plane)$ 

All the vibrations are active in both Raman scattering and infrared absorption. In the Raman spectrum, the in-plane vibrations give rise to polarized bands while the out-ofplane ones to depolarized band. The observed and calculated infrared and Raman spectra of SCSA are produced in common frequency scales in figures 2 and 3, respectively. The output of the quantum chemical calculations contains the force constant matrix in Cartesian coordinates in Hartree/Bohr<sup>2</sup> units. These force constants are transformed to the force fields in the internal local-symmetry coordinates. The internal coordinates and local symmetry coordinates are given in tables 2 and 3. The assignments of the normal modes of vibrations of the investigated molecules along with the observed fundamentals, unscaled frequencies obtained by B3LYP/6-31G\* calculations and scaled frequencies as well as the TED descriptions are reported in table 4 for SCSA.

## C-H vibrations

Aromatic compounds commonly exhibit multiple weak bands in the region 3000-3100cm<sup>-1</sup> (George, 2001) and are of strong to medium intensity and in this study also absorptions in this region are attributed to C-H stretching vibrations. In our present work, the calculated frequencies 3115- 3049  $cm^{-1}$  assigned to the eight C–H stretching vibrations their and experimental 3087. counterpart appear in 3072. 3026,2893,2870 cm<sup>-1</sup> of the IR spectrum and  $3088,3072,3054 \text{ cm}^{-1}$  are observed in FT-Raman spectrum for C-H vibrations.

#### **O–H vibrations**

The O–H stretching vibrations are sensitive to hydrogen bonding. The O–H stretching vibration is normally observed at about 3300 cm<sup>-1</sup>. The O–H in-plane bending vibration is observed in the region 1440–1260 cm<sup>-1</sup> (Sathyanarayan, 2004; Socrates, 2001). In SCSA, the bands appeared at 1247, 1200 cm<sup>-1</sup> in IR are assigned to O–H stretching modes of vibration.

## **C =O Vibrations**

The C= O stretching bands of acids are considerably more intense than ketonic = Ostretching bands, only the asymmetrical C =O stretching mode absorbs in the infrared. Internal hydrogen bonding reduces the frequency of the carbonyl stretching absorption to a greater degree than does intermolecular hydrogen bonding. The carbonyl stretching frequency has been most extensively studied by infrared spectroscopy. This multiple bonded group is highly polar and therefore gives rise to an intense infrared absorption band. The carbon-oxygen double bond is formed by  $P\pi$ – $P\pi$  bonding between carbon and oxygen. Because of the different electro negativities of carbon and oxygen atoms, the bonding electrons are not equally distributed between the two atoms. The lone pair of electrons on oxygen also determines the nature of the carbonyl group (Socrates, 2001). In the present study, the very strong band observed at 1739 cm<sup>-1</sup> in IR for SCSA was assigned to C = O stretching vibrations.

## **C–O vibrations**

If a compound contains a carbonyl group, the absorption caused by the C–O stretching is generally strongest (Bowman *et al.*, 1980). Considerations of these factors lead to assign the band observed at 1561-1220 cm<sup>-1</sup> to C–O stretching vibrations for the title compound.

#### **Ring vibrations**

The ring stretching vibrations are very prominent, as the double bond is in conjugation with the ring, in the vibrational spectra of benzene and its derivatives (Varsanyi, 1969). The carbon-carbon stretching modes of the phenyl group are expected in the range from 1733 to 1250 cm-1. The actual position of these modes is determined not so much by the nature of the substituents but by the form of substitution around the ring (Bellamy, 1975). In general, the bands are of variable intensity and are observed at 1625-1590, 1590-1575, 1540-1470, 1465-1430 and 1380-1280 cm-1 from the wavenumber ranges (Varsanyi, 1974) for the five bands in the region. In SCSA, the wavenumbers observed in the FTIR spectrum at 1609,1460-1301 cm<sup>-1</sup> and in FT-Raman spectrum at 1249,1322,1612,1742 cm<sup>-1</sup> have been assigned to C-C stretching vibrations. The bands identified at 756,728,668, 645,579, 572, 413, 398, 139, 128, 60 and 59 cm<sup>-1</sup> for SCSA have been assigned to ring in-plane out-of-plane bending and modes. respectively, by careful consideration of their quantitative descriptions.

## **Other molecular properties**

## Charge analysis

Atomic charges of the title compounds computed by Mulliken method and at the B3LYP/6-31G\* level of calculation, are illustrated in table 5. The magnitudes of the carbon atomic charges for the compound were found to be both positive and negative.. The magnitude of the hydrogen atomic charges is found to be positive and negative.

#### Thermodynamic properties

Several thermo dynamical parameters have been calculated by using DFT with6-31G\* basis set are given in table 6. Scale factors have been recommended by Minnesota for an accurate prediction determining the zeropoint vibrational energies for DFT calculation. The total energy of the molecule is the sum of the translational, rotational, vibrational and electronic energies.

#### **Dipole moment**

Dipole moment reflects the molecular charge distribution and is given as a vector in three dimensions. Therefore, it can be used as descriptor to depict the charge movement across the molecule. Direction of the dipole moment vector in a molecule depends on the centers of positive and negative charges. Dipole moments are strictly determined for neutral molecules. Dipole moment values of the title compounds are shown in table 6.

## Polarizability and Hyperpolarizability

The polarizabilities and hyperpolarizability characterize the response of a system in an applied electric The potential field. application of the title molecule in the field nonlinear of optics demands the investigation of its structural and bonding contributing features to the hyperpolarizability enhancement, by analyzing the vibrational modes using IR and Raman spectroscopy. Many organic containing conjugated molecules, electrons are characterized by large values of molecular first hyperpolarizability, were analyzed of by means vibrational spectroscopy (Karpagam et al., 2010; Vijaykumar *et al.*, 2008). The first hyperpolarizability  $\beta$  of this novel molecular system of SCSA are calculated using the ab

initio quantum mechanical method, based on the finite-field approach. In the presence of an applied electric field, the energy of a system is a function of the electric field. First hyperpolarizability  $(\beta)$  is a third rank tensor that can be described by a 3 x 3 x 3 matrix. The 27 components of the 3D matrix can be reduced to 10 components due to the Kleinman symmetry (Kleinman, 1962). The first hyperpolarizability  $\beta$ , dipole moment  $\mu$ and polarizability  $\alpha$  is calculated using 6-31G\* basis set on the basis of the finitefield approach. The complete equations for calculating the magnitude of total static dipole moment  $\mu$ , the mean polarizability atot, the anisotropy of the polarizability  $\Delta \alpha$ , and the mean first polarizability  $\beta$ o, using the x, y, z components from Gaussian03W output is as follows.

$$\mu_{tot} = \left(\mu_x^2 + \mu_y^2 + \mu_y^2\right)^{1/2}$$
  

$$\alpha_{tot} = 1/3 \left[ \left(\alpha_{xx} + \alpha_{yy} + \alpha_{zz}\right) \right]$$
  

$$\Delta \alpha = 1/\sqrt{2} \left[ \left(\alpha_{xx} - \alpha_{yy}\right)^2 + \left(\alpha_{yy} - \alpha_{zz}\right)^2 + \left(\alpha_{yy} + \beta_{yzz}\right)^2 + \left(\alpha_{yy} + \beta_{yzz}\right)^2 + \left(\beta_{yyy} + \beta_{yyz}\right)^2 + \left(\beta_{yyy} + \beta_{yy}\right)^2 + \left(\beta_{yy} +$$

The polarizability and hyperpolarizability are reported in atomic units (a.u), the calculated values have been converted into electrostatic units (e.s.u) (for  $\alpha$ :1 a.u.=  $0.1482 \times 10^{-24}$  esu, for  $\beta$ :1 a.u. = 8.6393 x 10<sup>-10</sup> <sup>33</sup> esu). Theoretically calculated values of first hyperpolarizability and dipole moment are as shown in table 7. The large value of hyperpolarizability,  $\beta$  which is a function of the non-linear optical activity of the molecular system, is associated with the intramolecular charge transfer, resulting from the electron cloud movement through  $\pi$ conjugated frame work from electron donor to electron acceptor groups. The physical properties of these conjugated molecules are governed by the high degree of electronic charge delocalization along the charge transfer axis and by the low band gaps. So we conclude that the title molecule is an attractive object for future studies of nonlinear optical properties.

#### Frontier molecular orbitals (FMOs)

The highest occupied molecular orbitals (HOMO) and the lowest-lying unoccupied molecular orbitals (LUMO) are named as frontier molecular orbitals (FMO). The FMO play an important role in the optical and electric properties, as well as in quantum chemistry (Fleming, 1976). The HOMO – LUMO energy gap of SCSA have been calculated at the B3LYP/6-31G\* level and are shown in table 8, which reveals that the energy gap reflect the chemical activity of the molecules. LUMO is an electron accepter, that represents the ability to obtain an electron and HOMO represents the ability to donate an electron. This electronic absorption corresponds to the transition from the ground to the first excited state and azz is mainly described by 1 effectron excitation from the highest occupied molecular orbital to the lowest unoccupied molecular orbital. By While the energy of the HOMO is directly related to the ionization potential, LUMO energy is directly related to the electron affinity. The frontier orbitals (HOMO, LUMO) of SCSA, with its energy are plotted in figure 4.

For SCSA, HOMO energy = -0.220 a.u LUMO energy = -0.064 a.u HOMO – LUMO energy gap = 0.156 a.u

## <sup>13</sup>C and <sup>1</sup>H NMR spectral analysis

The isotropic chemical shifts are frequently used as an aid in identification of reactive organic as well as ionic species. Then, gauge –including atomic orbital (GIAO) <sup>13</sup>CNMR and <sup>1</sup>HNMR chemical shifts calculations of the title compounds have been carried out by using B3LYP/ functional with 6-31G\* basis set. Application of the GIAO (Ditchfield, 1972) approach to molecular systems was significantly improved by an efficient application of the method to the ab initio SCF calculation, using techniques borrowed from analytic derivative methodologies. Relative chemical shifts were estimated by using the corresponding TMS shielding calculated in advanced at the same theoretical level as the reference.

|             | Value (A <sup>0</sup> ) |             | Value ( <sup>0</sup> ) |
|-------------|-------------------------|-------------|------------------------|
| Bond length | SCSA                    | Bond angle  | SCSA                   |
| C1-C2       | 1.382                   | C1-C2-C3    | 121.820                |
| C2-C3       | 1.412                   | C2-C3-C4    | 118.938                |
| C3-C4       | 1.420                   | C3-C4-C5    | 118.468                |
| C4-C5       | 1.408                   | C4-C5-C6    | 121.251                |
| C5-C6       | 1.384                   | С2-С1-Н7    | 120.442                |
| C1-H7       | 1.084                   | С1-С2-Н8    | 120.999                |
| С2-Н8       | 1.084                   | С4-С5-Н9    | 117.225                |
| С5-Н9       | 1.084                   | C5-C6-H10   | 119.347                |
| C6-H10      | 1.086                   | C3-C4-O11   | 126.370                |
| C4-O11      | 1.341                   | C4-O11-H12  | 113.476                |
| O11-H12     | 0.977                   | C2-C3-C13   | 115.117                |
| C3-C13      | 1.474                   | C3-C13-O14  | 125.904                |
| C13-O14     | 1.209                   | C3-C13-O15  | 111.875                |
| C13-O15     | 1.392                   | C13-O15-C16 | 121.303                |
| O15-C16     | 1.381                   | O15-C16-C17 | 118.312                |
| C16-C17     | 1.410                   | O15-C16-C18 | 121.089                |
| C16-C18     | 1.395                   | C16-C17-C19 | 118.479                |
| C17-C19     | 1.406                   | C16-C18-C20 | 119.765                |
| C18-C20     | 1.392                   | C16-C18-H21 | 119.455                |
| C18-H21     | 1.081                   | C17-C19-C22 | 121.098                |
| C19-C22     | 1.388                   | С17-С19-Н23 | 118.510                |
| C19-H23     | 1.082                   | C18-C20-H24 | 119.186                |
| C20-H24     | 1.085                   | С19-С22-Н25 | 120.038                |
| C22-H25     | 1.084                   | C16-C17-C26 | 121.785                |
| C17-C26     | 1.483                   | C17-C26-O27 | 126.877                |
| C26-O27     | 1.219                   | C17-C26-O28 | 112.601                |
| C26-O28     | 1.353                   | C26-O28-H29 | 105.640                |
| O28-H29     | 0.971                   |             |                        |

**Table.1** Optimized geometrical parameters of SCSA obtained by B3LYP 6/31G\* density functional calculations

The atom indicated in the parenthesis belongs to SCSA; for numbering of atoms refer figure 1.

| No                                    | Symbol         | Туре   | Definition                                                                                                                                                                                                                  |
|---------------------------------------|----------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stretching                            |                |        |                                                                                                                                                                                                                             |
| 1-12                                  | Pi             | C-C    | C1-C2,C2-C3, C3-C4, C4-<br>C5,C5-C6, C6-C1, C16-<br>C17,C17-C19, C19-<br>C22,C22-20,<br>C20-C18, C18-C16.<br>C3-C13,C17-C26.                                                                                                |
| 13-14                                 | pi             | C-C(a) |                                                                                                                                                                                                                             |
| 15-22                                 | Qi             | С-Н    | C1-H7, C2-H8,<br>C5-H9, C6-H10,<br>C18-H21, C19-H23, C20-<br>H24, C22-H25,                                                                                                                                                  |
| 23-28                                 | qi             | C-0    | C4-011, C13-014,<br>C13-015,C16-015,C26-<br>027,<br>C26-028                                                                                                                                                                 |
| 29-30<br>Bending<br>In- plane bending | Ri             | О-Н    | O11- H12,O28-H29.                                                                                                                                                                                                           |
| 31-34                                 | $\beta_i$      | C-C-C  | C2-C3-C13, C4-C3-C13,<br>C16-C17-C26, C19-C17-<br>C26                                                                                                                                                                       |
| 35-50                                 | β              | С-С-Н  | C2-C1- H7,C6-C1-H7, C3-<br>C2- H8, C1-C2- H8, C4-<br>C5- H9, C6-C5- H9, C1-<br>C6- H10, C5- C6-H10,<br>C16-C18-H21,<br>C20-C18-H21,C17-C19-<br>H23,C22-C19-H23,C22-<br>C20-H24,C18-C20-<br>H24,C20-C22-H25,C19-<br>C22-H25. |
| 51-54                                 | α <sub>i</sub> | C-C-O  | C3-C13- O14, C3-C13-<br>O15,C17-C26-O27,C17-<br>C26-O28.                                                                                                                                                                    |
| 55-56                                 | $ ho_i$        | С-О-Н  | C4-O11-H12,C26-O28-<br>H29                                                                                                                                                                                                  |
| 57-60                                 | $	heta_{ m i}$ | C-0    | C3-C4-O11,C5-C4-<br>O11,C17-C16-O15,C18-<br>C16-O15                                                                                                                                                                         |
| 61                                    | $	heta_{ m i}$ | C-O-C  | C13-O15-C16                                                                                                                                                                                                                 |

## Table.2 Definition of internal co-ordinates of SCSA

| 62-67            | $\Phi_{\mathrm{i}}$ | C–C–C (ring1) | C1C2C3, C2C3C4,<br>C3C4C5, C4C5C6,                                                                                                   |
|------------------|---------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 68-73            | $\Phi_{ m i}$       | C–C–C (ring2) | C5-C6-C1, C6-C1-C2.<br>C16-C17-C19, C17-C19-<br>C22, C19-C22-C20, C22-<br>C20-C18, C20-C18-<br>C16,C18-C16-C17.                      |
| Out–of–plane ben | ding                |               |                                                                                                                                      |
| 74-75            | ω <sub>i</sub>      | C-C           | C13-C3-C2-C4, C26C17-<br>C16-C19.                                                                                                    |
| 76-83            | ω <sub>i</sub>      | С-Н           | H7-C1-C2-C6,H8-C2-C1-<br>C3,H9-C5-C4-C6,H10-C6-<br>C5-C1,H21-C18-C16-<br>C20,H23-C19-C22-<br>C17,H24-C20-C18-<br>C22,H25-C22-C20-C19 |
| 84-85            | $\omega_{i}$        | C-0           | 011-C4-C5-C3,015-C16-<br>C17-C18.                                                                                                    |
| Torsion          |                     |               |                                                                                                                                      |
| 86-87            | $	au_{\mathrm{i}}$  | С-О-Н         | C3-C4-O11-H12,C17-C26-<br>O28-H29.                                                                                                   |
| 88-91            | $	au_{i}$           | C-0           | C2-C3-C13-O14,C4-C3-<br>C13-O15,C16-                                                                                                 |
|                  |                     |               | C17-C26-O27,C19-C17-<br>C26-O28.                                                                                                     |
| 92               | <b>T</b> .          | C-O-C         | C16-015-C13-C3                                                                                                                       |
| 93               | $\tau_i$            | 0-C-0         | 014-C13-O15-C16.                                                                                                                     |
| 94-99            | $	au_i$             | Tring 1       | C1–C2–C3-C4, C2–C3–<br>C4-C5, C3–C4–C5-C6,<br>C4–C5–C6-C1, C5–C6-C1-                                                                 |
| 100-105          | τι                  | Tring 2       | C16-C17-C19-C22, C17-<br>C19-C22-C20, C19-C22-<br>C20-C18, C22-C20-C18-<br>C16, C20-C18-C16-C17,<br>C18-C16-C17-C19.                 |

For numbering of atoms refer figure 1.

\_\_\_\_

| No.                  | Symbol <sup>a</sup> | Definition <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-12                 | CC                  | $P_1, P_2, P_3, P_4, P_5, P_6, P_7, P_8, P_9,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      |                     | $P_{10}, P_{11}, P_{12}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13-14                | CC(a)               | <b>p</b> <sub>13</sub> , <b>p</b> <sub>14</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 15-22                | CH                  | $Q_{15}, Q_{16}, Q_{17}, Q_{18}, Q_{19}, Q_{20}, Q_{21},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      |                     | Q <sub>22</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 23-28                | CO                  | $q_{23}, q_{24}, q_{25}, q_{26}, q_{27}, q_{28}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 29-30                | OH                  | $R_{29}, R_{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 31-32                | bCC                 | $(\beta_{31} - \beta_{32})/\sqrt{2}, (\beta_{33} - \beta_{34})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 33-40                | bCH                 | $(\beta_{35}-\beta_{36})/\sqrt{2}, (\beta_{37}-\beta_{38})/\sqrt{2},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                     | $(\beta_{39} - \beta_{40})/\sqrt{2}, (\beta_{41} - \beta_{42})/\sqrt{2}, (\beta_{$ |
|                      |                     | $(\beta_{43} - \beta_{44})/\sqrt{2}, (\beta_{45} - \beta_{46})/\sqrt{2}, (\beta_{$ |
| <i>A</i> 1 <i>AA</i> | hCCO                | $(p_{47} - p_{48})/\sqrt{2}, (p_{49} - p_{50})/\sqrt{2}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 41-44                | bCCH                | $u_{51}, u_{52}, u_{53}, u_{54}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 47-48                | bCO                 | $(\theta_{57} - \theta_{59})/\sqrt{2}, (\theta_{59} - \theta_{59})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 49                   | bCOC                | $\Theta_{61}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 50                   | bring1              | $(\Phi_{62} - \Phi_{63} + \Phi_{64} - \Phi_{65} + \Phi_{66} -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | -                   | $\Phi_{67})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 51                   | bring1              | $(-\Phi_{62}, \Phi_{63}, +2\Phi_{64}, \Phi_{65}, \Phi_{66}, +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      |                     | $\Phi_{67})/\sqrt{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 52                   | bring1              | $(\Phi_{62} - \Phi_{63} + \Phi_{64} - \Phi_{65})/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 53                   | bring2              | $(\Phi_{69} - \Phi_{60} + \Phi_{70} - \Phi_{71} + \Phi_{77} - \Phi_{71})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      | 8                   | $(-63)^{-63} - 65^{-63} - 76^{-6} - 71^{-6} - 72^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 54                   | bring2              | $(-\Phi_{68}-\Phi_{69}+2 \Phi_{70}-\Phi_{71}-\Phi_{72}+2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      |                     | $\Phi_{73})/\sqrt{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 55                   | bring2              | $(\Phi_{68} - \Phi_{69} + \Phi_{70} - \Phi_{71})/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 56-57                | ωCC                 | ω <sub>74</sub> , ω <sub>75.</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 58-65                | ωCΗ                 | $\omega_{76}, \omega_{77}, \omega_{78}, \omega_{79}, \omega_{80}, \omega_{81}, \omega_{82}, \omega_{83}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 66-67                |                     | $\omega_{84}$ , $\omega_{85}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70.73                | tCOn                | $\tau_{86}, \tau_{87.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 70-73                |                     | $\tau_{88}, \tau_{89}, \tau_{90}, \tau_{91}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 74<br>75             | tOCO                | t <sub>92.</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 75                   | tring1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70                   | umgi                | $(194 + 195 + 196 + 197 + 198 + \tau_{1})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 77                   | tring1              | $(\tau_{0,0} + \tau_{0,0} + \tau_{0,0})/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 78                   | tring1              | (194 + 195 + 196 + 197)/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 70                   | umgi                | $(-194 + 2195 - 196 - 197 + 2198 - 100)/\sqrt{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 79                   | tring2              | $(T_{100} + T_{101} + T_{102} + T_{102} + T_{104} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |                     | $\tau_{105}/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 80                   | tring2              | $(\tau_{100} + \tau_{101} + \tau_{102} + \tau_{102})/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 81                   | tring2              | $(-\tau_{100} + 2\tau_{101} - \tau_{102} - \tau_{103} + 2\tau_{104} - \tau_{104} + 2\tau_{104} + 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      | 0                   | $\tau_{105}/\sqrt{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Table.3 Definition of local symmetry coordinates of SCSA

<sup>a</sup>These symbols are used for description of the normal modes by PED in table 4. <sup>b</sup>The internal coordinates used here are defined in table 2.

| Int. | J.Curr.R | es.Aca.Re | ev.2015; | 3(8): | 208-228 |
|------|----------|-----------|----------|-------|---------|
|------|----------|-----------|----------|-------|---------|

## Table.4 Observed and B3LYP/6-31G\*level Calculated vibrational frequency (cm<sup>-1</sup>) of SCSA

| Sl.<br>No      | Symmetry<br>species | Observed<br>frequencies (cm <sup>-1</sup> ) |                   | ymmetry opecies Observed (cm <sup>-1</sup> ) Calculated frequencies (cm <sup>-1</sup> ) with B3LYP/6–31G* force field |                      | TED (%)among type<br>of internal coordinates |                                      |                                                                       |
|----------------|---------------------|---------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------|--------------------------------------|-----------------------------------------------------------------------|
| 110            | species             | Infrared                                    | Raman             | Un scaled                                                                                                             | Scaled               | $IR^{a}(A_{i})$                              | Raman <sup>b</sup> (I <sub>i</sub> ) |                                                                       |
| 1<br>2         | A<br>A              | 3470<br>3235                                | -                 | 3628<br>3418                                                                                                          | 3471<br>3271         | 91.545<br>790.451                            | 143.735<br>223.980                   | OH (98)<br>OH (99)                                                    |
| 3              | А                   | -                                           | 3088              | 3255                                                                                                                  | 3115                 | 0.324                                        | 76.201                               | CH (99)                                                               |
| 4              | А                   | 3087                                        | -                 | 3237                                                                                                                  | 3097                 | 2.715                                        | 120.358                              | CH (98)                                                               |
| 5              | А                   | 3072                                        | -                 | 3223                                                                                                                  | 3084                 | 10.465                                       | 173.958                              | CH (99)                                                               |
| 6              | А                   | -                                           | 3072              | 3216                                                                                                                  | 3077                 | 7.444                                        | 109.896                              | CH (100)                                                              |
| 7              | А                   | -                                           | 3054              | 3211                                                                                                                  | 3072                 | 15.448                                       | 194.762                              | CH (100)                                                              |
| 8              | А                   | 3026                                        | -                 | 3205                                                                                                                  | 3067                 | 10.995                                       | 130.301                              | CH (100)                                                              |
| 9              | А                   | 2893                                        | -                 | 3195                                                                                                                  | 3057                 | 3.467                                        | 77.737                               | CH (100)                                                              |
| 10             | А                   | 2870                                        | -                 | 3186                                                                                                                  | 3049                 | 8.413                                        | 92.109                               | CH (100)                                                              |
| 11             | А                   | -                                           | 1742              | 1811                                                                                                                  | 1733                 | 445.824                                      | 79.471                               | CC(73),bCH(11)                                                        |
| 12             | А                   | 1739                                        | -                 | 1796                                                                                                                  | 1718                 | 265.883                                      | 106.302                              | CO(68),bCC(26)                                                        |
| 13             | А                   | -                                           | 1612              | 1672                                                                                                                  | 1600                 | 126.542                                      | 73.327                               | CC(60),CCa(17),<br>bCOC(15)                                           |
| 14             | А                   | 1609                                        | -                 | 1655                                                                                                                  | 1583                 | 45.513                                       | 54.973                               | CC(72), bring(12)                                                     |
| 15             | А                   | -                                           | 1585              | 1632                                                                                                                  | 1561                 | 41.839                                       | 18.119                               | CO(55),bCH(15),                                                       |
| 16             | А                   | 1580                                        | -                 | 1618                                                                                                                  | 1548                 | 35.605                                       | 37.480                               | CO(16),CC(14),<br>bCO(10)                                             |
| 17             | А                   | -                                           | 1466              | 1532                                                                                                                  | 1466                 | 81.030                                       | 7.107                                | CO(68), bCC(26)                                                       |
| 18             | А                   | 1460                                        | -                 | 1527                                                                                                                  | 1461                 | 128.430                                      | 9.498                                | CC(68),<br>bCOC(11),bring(11)                                         |
| 19             | А                   | 1450                                        | -                 | 1507                                                                                                                  | 1442                 | 35.474                                       | 10.787                               | CC(48),<br>bCCO(14).bCH(11)                                           |
| 20             | А                   | 1413                                        | -                 | 1487                                                                                                                  | 1423                 | 38.143                                       | 3.884                                | CC(31),bring(17),<br>bCH (14)                                         |
| 21             | А                   | 1333                                        | -                 | 1398                                                                                                                  | 1337                 | 126.047                                      | 10.453                               | CC(52), bCO(20), bring (14)                                           |
| 22             | А                   | -                                           | 1322              | 1389                                                                                                                  | 1329                 | 27.127                                       | 41.904                               | CC(58),<br>bCC(13) bCH(11)                                            |
| 23<br>24<br>25 | A<br>A<br>A         | 1301<br>-<br>-                              | -<br>1279<br>1249 | 1369<br>1355<br>1307                                                                                                  | 1310<br>1296<br>1250 | 3.114<br>6.867<br>10.783                     | 3.523<br>8.358<br>1.600              | CC(65), bCOC(21)<br>CO(55), bring(10)<br>CC(56),<br>bCCO(11),bCOH(11) |

|    |   |      | ,    |      |      |         |        |                                          |
|----|---|------|------|------|------|---------|--------|------------------------------------------|
| 26 | А | 1247 | -    | 1301 | 1245 | 292.523 | 12.173 | bCOH(47), CC(12)                         |
| 27 | А | -    | 1204 | 1275 | 1220 | 208.224 | 27.763 | CO(68), bCC(26)                          |
| 28 | А | 1200 | -    | 1244 | 1190 | 309.173 | 55.933 | bCOH(64), bCO(20)                        |
| 29 | А | -    | 1169 | 1212 | 1159 | 277.125 | 26.514 | CC(68),<br>bCH(11),bCC(11)               |
| 30 | А | -    | 1160 | 1207 | 1155 | 79.425  | 60.050 | CC(41),bring(17),<br>bCH (14)            |
| 31 | А | 1158 | -    | 1192 | 1140 | 40.215  | 23.138 | bCC(78)                                  |
| 32 | А | 1129 | -    | 1181 | 1130 | 65.569  | 22.147 | bCH(23), bCCO(14),<br>bring(12), CC(11)  |
| 33 | А | 1115 | -    | 1171 | 1120 | 37.097  | 0.872  | bCCO(23), bCH(14),<br>CH(15), CC(11)     |
| 34 | А | 1088 | -    | 1129 | 1080 | 47.802  | 5.586  | bCCO(23), bCC(14),<br>bring(12), CCa(11) |
| 35 | А | 1067 | -    | 1096 | 1048 | 219.683 | 5.390  | bCC(48),OH(16)                           |
| 36 | А | -    | 1036 | 1080 | 1033 | 96.643  | 47.197 | CCa(67),bCC(12),<br>bCH(11)              |
| 37 | А | 1026 | -    | 1072 | 1025 | 10.090  | 3.521  | CCa(45),bCO(18),<br>bCH(13)              |
| 38 | А | 979  | -    | 1043 | 998  | 280.684 | 8.138  | bCH(23), bCO(14), CC(11)                 |
| 39 | А | 936  | -    | 998  | 955  | 0.154   | 0.043  | bCH(34), bCCO(14),<br>bring(12), CO(11)  |
| 40 | А | -    | 930  | 991  | 948  | 0.137   | 0.086  | bCCO(64), bCO(20)                        |
| 41 | А | -    | 901  | 976  | 934  | 1.023   | 0.538  | bCH(23), bCCO(14),<br>CH(17)             |
| 42 | А | 900  | -    | 971  | 929  | 1.924   | 1.247  | bCH(23), bCCO(14),<br>bring(12), CC(11)  |
| 43 | А | -    | 862  | 896  | 857  | 3.095   | 3.331  | ωCH (57), tring(18)                      |
| 44 | А | -    | 823  | 878  | 840  | 1.312   | 4.804  | bCOC(64), bCO(20)                        |
| 45 | А | 820  | -    | 876  | 838  | 3.330   | 2.129  | $\omega$ CC (57), tring(18)              |
| 46 | А | 810  | -    | 850  | 813  | 1.630   | 2.201  | bCH(63), bCC(20)                         |
| 47 | А | -    | 805  | 836  | 800  | 13.611  | 25.243 | bCH(63), bCC(20)                         |
| 48 | А | -    | 770  | 800  | 765  | 1.007   | 1.462  | bCH(63), bCC(20)                         |
| 49 | А | 757  | -    | 790  | 756  | 5.141   | 2.424  | bring (72)                               |
| 50 | А | -    | 752  | 766  | 733  | 52.767  | 3.687  | bCCO(23), bCO(14),<br>bring(12), CC(11)  |

|    |   |     | 1   |     |     | 0,0(0).200 |        |                                |
|----|---|-----|-----|-----|-----|------------|--------|--------------------------------|
| 51 | А | 751 | -   | 761 | 728 | 60.708     | 12.269 | bring (63)                     |
| 52 | А | -   | 695 | 757 | 724 | 9.542      | 3.263  | ωCO(60), bCC(20                |
| 53 | А | 694 | -   | 712 | 681 | 48.613     | 3.281  | tCOH(60), ωCC(20)              |
| 54 | А | 671 | -   | 699 | 668 | 20.421     | 1.395  | bring (48), CC(11)             |
| 55 | А | 663 | _   | 674 | 645 | 12.430     | 8.393  | bring (48), CC(11)             |
| 56 | А | _   | 662 | 654 | 625 | 108,435    | 0.694  | $tCO(60)$ , $\omega CH(20)$    |
| 57 | A | 598 | -   | 623 | 596 | 35.548     | 1.320  | $\omega CO(60), \omega CO(20)$ |
| 01 |   | 070 |     | 020 | 070 |            | 1.020  |                                |
| 58 | А | -   | 594 | 606 | 579 | 65.102     | 6.901  | tring(54), ωCH(33)             |
| 59 | А | 580 | _   | 598 | 572 | 3.921      | 9.634  | bring (48), CC(11)             |
| 60 | А | -   | 566 | 570 | 545 | 6.074      | 12.423 | ωCH(60), bCC(20)               |
| 61 | А | _   | 555 | 545 | 521 | 2 254      | 1 151  | $\omega$ CH(62) tring(15)      |
| 62 | Λ | 540 | 555 | 533 | 510 | 2.251      | 2 127  | hCU(43)                        |
| 02 | A | 549 | -   | 555 | 510 | 2.303      | 2.137  | bring(22),bCC(22)              |
| 63 | А | -   | 530 | 530 | 507 | 4.221      | 0.694  | ωCH(62), tring(15)             |
| 64 | А | 498 | -   | 526 | 503 | 18.604     | 0.870  | $\omega$ CC (57), tring(18)    |
| 65 | А | -   | 484 | 442 | 422 | 0.084      | 0.179  | tCOH(60), ωCC(20)              |
| 66 | А | -   | 447 | 432 | 413 | 5.128      | 1.558  | bring (48), CC(11)             |
| 67 | А | -   | 380 | 416 | 398 | 4.199      | 2.906  | tring(54), CH(33)              |
| 68 | А | -   | 365 | 387 | 370 | 1.536      | 3.576  | $\omega$ CH(62),tring(15)      |
| 69 | А | -   | 330 | 348 | 333 | 1.790      | 1.577  | $\omega$ CH(62), tring(15)     |
| 70 | А | -   | 276 | 303 | 289 | 4.955      | 0.431  | $\omega$ CH(62), tring(15)     |
| 71 | А | -   | 269 | 275 | 263 | 0.326      | 3.380  | bCO(73), bOH(13)               |
| 72 | А | -   | 248 | 252 | 241 | 0.452      | 3.589  | bCO(73), bCC(12)               |
| 73 | А | -   | 214 | 236 | 225 | 0.752      | 0.578  | ωCH(62),tCOH(15)               |
| 74 | А | -   | 207 | 209 | 200 | 1.881      | 1.376  | tCO(60), ωCH(20)               |
| 75 | А | -   | 189 | 194 | 185 | 0.957      | 3.570  | tCO(60), ωCH(20)               |
| 76 | А | -   | 163 | 168 | 160 | 2.622      | 4.034  | ωCH(60), bCC(20)               |
| 77 | А | -   | 132 | 146 | 139 | 2.691      | 0.998  | tring (70)                     |
| 78 | А | -   | 120 | 134 | 128 | 0.402      | 0.355  | tring (62),tCOH(15)            |
| 79 | А | -   | 117 | 100 | 95  | 0.965      | 5.883  | tCOC(60), ωCH(20)              |
| 80 | А | -   | 107 | 63  | 60  | 1.303      | 4.052  | tring (70)                     |
| 81 | А | -   | 98  | 62  | 59  | 0.923      | 3.952  | tring(54), ωCH(33)             |

 Abbreviations used: R: ring; ss:symmetric stretching; b:bending; ω:ωagging; t:torsion; Contributions larger than 10% are given.
 a

 <sup>a</sup>Relative absorption intensities normalized with highest peak absorption equal to 1.0.
 b

 <sup>b</sup>Relative Raman intensities calculated by E.2 and normalized to 100

|                    | B3LYP/6-31G* |
|--------------------|--------------|
| Atoms <sup>a</sup> | Mulliken     |
|                    | SCSA         |
| C1                 | -0.101794    |
| C2                 | -0.101428    |
| C3                 | -0.012593    |
| C4                 | 0.298866     |
| C5                 | -0.104247    |
| C6                 | -0.077557    |
| H7                 | 0.090625     |
| H8                 | 0.120984     |
| H9                 | 0.096051     |
| H10                | 0.090659     |
| O11                | -0.572793    |
| H12                | 0.369479     |
| C13                | 0.594277     |
| O14                | -0.468374    |
| O15                | -0.570761    |
| C16                | 0.317522     |
| C17                | 0.012437     |
| C18                | -0.073220    |
| C19                | -0.111712    |
| C20                | -0.089654    |
| H21                | 0.121229     |
| C22                | -0.083239    |
| H23                | 0.126550     |
| H24                | 0.102853     |
| H25                | 0.099050     |
| C26                | 0.573626     |
| O27                | -0.489288    |
| O28                | -0.490461    |
| H29                | 0.332915     |

Table.5 Atomic charges for optimized geometry of SCSA

<sup>a</sup>The atoms indicated in the parenthesis belongs to SCSA; for numbering of atoms refer figure 1.

**Table.6** Theoretically computed energies (a.u), zero-point vibrational energies (kcal/mol), rotational constants (GHz), entropies (cal/mol-Kelvin) and dipole moment (Debye)

| Parameters          | B3LYP/6-31G* |
|---------------------|--------------|
|                     | SCSA         |
|                     |              |
| Total energy        | -915.6845    |
| Zero-point energy   | 135.31962    |
| Rotational constant | 0.77367      |
|                     | 0.23903      |
|                     | 0.19152      |
| Entropy             |              |
| Total               | 126.864      |
| Translational       | 42.544       |
| Rotational          | 33.473       |
| Vibrational         | 50.847       |
| Dipole moment       | 2.4888       |

### Table.7 Nonlinear optical properties of SCSA calculated using B3LYP/6-31G\* basis set

| NLO behavior                                         | SCSA                         |
|------------------------------------------------------|------------------------------|
| Dipole moment (µ)                                    | 1.5820 Debye                 |
| Mean polarizablity ( $\alpha$ )                      | $3.516 \times 10^{-24}$ esu  |
| Anisotropy of the polarizability ( $\Delta \alpha$ ) | 88.384                       |
| First hyper polarizability ( $\beta_0$ )             | $1.0735 \times 10^{-30}$ esu |

### Table.8 HOMO – LUMO energy value calculated by B3LYP/6-31G\*

| Parameters | B3LYP/6-31G* |  |
|------------|--------------|--|
|            | SCSA         |  |
| НОМО       | -0.220       |  |
| LUMO       | -0.064       |  |
| HOMO -LUMO | 0.156        |  |

| Atoms      | SCSA         |                |
|------------|--------------|----------------|
|            | Exp          | Cal            |
| C1         | 119.53       | 121.049        |
| C2         | 130.73       | 138.445        |
| C3         | 111.93       | 117.838        |
| C4         | 161.96       | 163.505        |
| C5         | 117.69       | 123.152        |
| C6         | 136.42       | 138.544        |
| C13        | 168.96       | 166.136        |
| C16        | 150.45       | 157.304        |
| C17        | 124.07       | 123.262        |
| C18        | 122.48       | 129.067        |
| C19        | 132.74       | 136.338        |
| C20        | 134.91       | 137.232        |
| C22        | 126.61       | 127.125        |
| C26        | 169.76       | 167.537        |
| H7         | 6.91         | 7.723          |
| H8         | 8.12         | 9.070          |
| H9         | 7.01         | 7.834          |
| H10        | 7.50         | 8.306          |
| H12        | 10.25        | 10.942         |
| H21<br>H23 | 7.25<br>8.05 | 8.728<br>9.212 |
| H24        | 7.63         | 8.516          |
| H25        | 7.37         | 8.158          |
| H29        | 10.73        | 6.700          |

**Table.9** Theoretical and experimental 1H NMR and 13C NMR spectra of SCSA (with respect to<br/>TMS, all values in ppm) for B3LYP/6-31G\*

For numbering of atoms refer figure 1.



Fig.1 Molecular model of SCSA along with numbering of atoms

(a) Calculated with B3 LYP/6-31G\*

(b) Observed with KBr disc







(a) Calculated with B3 LYP/6-31G\*(b) Observed with KBr disc

## Fig.4 HOMO and LUMO plot of SCSA



(a)  $E_{HOMO} = -0.220 a.u$ 



(b) E <sub>LUMO</sub>= - 0.064 a.u ΔE <sub>HOMO-LUMO</sub>= 0.156 a.u







Experimental and theoretical chemical shifts of SCSA in <sup>13</sup>CNMR and <sup>1</sup>HNMR spectra were recorded and the obtained data are presented in table 9. The linear correlations between calculated and experimental data of

<sup>13</sup>CNMR and <sup>1</sup>HNMR spectra are noted. Correlation coefficients of <sup>13</sup>CNMR and <sup>1</sup>HNMR are 1.0629 and 0.9457 for SCSA. The data shows a good correlation between predicted and observed proton and carbon chemical shifts. The correlations of NMR spectra are presented in figure 5 for SCSA. The range of the <sup>13</sup>CNMR chemical shifts for a typical organic molecule usually is>100 ppm (Kalinowski *et al.*, 1988; Pihlaja and Kleinpeter, 1994) and the accuracy ensures reliable interpretation of spectroscopic parameters. In the present study, the <sup>13</sup>CNMR chemical shifts in the ring for SCSA are>100 ppm, as they would be expected.

#### Conclusion

In the present work, the optimized molecular structure of stable conformer, the thermodynamic properties and vibrational frequencies of the title compound have been calculated by DFT method using B3LYP/6-31G\* basis set. The theoretical results were compared with the experimental vibrations. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts have been compared with experimental values. As a result, all the vibrational frequencies were calculated and scaled values (with 6-31G\* basis set) have been compared with experimental FTIR and FT-Raman spectra. The observed and the frequencies calculated are in good agreement. Furthermore, the nonlinear optical, first-order hyperpolarizabilities and total dipole moment properties of the molecules show that the title molecules are an attractive object for future studies of nonlinear optical properties.

#### References

Becke, A.D. 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. *Phys. Rev. A*, 38: 3098–3100.

- Bellamy, L.J. 1975. The infrared spectra of complex molecules, 3rd edn. Wiley, New York.
- Blom, C.E., Altona, C. 1976. Application of self-consistent-field ab initio calculations to organic molecules. *Mol. Phys.*, 31: 1377.
- Bowman, W.D., Spiro, T.G., Bhem. J. 1980. J. Chem. Phys., 73: 5482.
- Cheeseman, J. R., Trucks, G. W., Keith, T. A., Frisch, M. J. 1996. A comparison of models for calculating nuclear magnetic resonance shielding tensors. J. Chem. Phys., 104: 5497.
- Ditchfield, R. 1972. Molecular orbital theory of magnetic shielding and magnetic susceptibility. J. Chem. Phys., 56: 5688.
- Fleming, I. 1976. Frontier orbitals and organic chemical reactions. Wiley, London.
- Frisch, A., Nielsen, A.B., Holder, A.J., Gauss view users manual, Gaussian Inc.,

Pittsburgh.

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb. M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick. D.K., Rabuck, A.D.. Raghavachari, K., Foresman, J.B.,

- Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A., Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford, CT, 2004.
- George, S. 2001. Infrared and Raman characteristic group frequencies, tables and charts, 3<sup>rd</sup> edn., Wiley, Chichester.
- Hawley, S. A., Fullerton, M. D., Ross, F.A., Schertzer, J.D., Chevtzoff, C., Walker, K.J., Peggie, M.W., Zibrova, D. *et al.* 2012. *Science*, 336(6083): 918–22.
- Hehre, W.J., Random, L., Schleyer, P.V.R., Pople, J.A. 1986. Ab initio Molecular Orbital Theory, Wiley, New York.
- Hess, B.A., Schaad, J., Carsky, P., Zahraduik, R. 1986. *Chem. Rev.*, 86: 709.
- Kalinowski, H.O., Berger, S., Barun, S. 1988. C-13 NMR spectroscopy. Chichester, John Wiley and Sons.
- Karpagam, J., Sundaraganessan, N., Sebastian, S., Manoharan, S., Kurt, M., Raman, J. 2010. Spectros., 41: 53–62.
- Keresztury, G., Holly, S., Varga, J., Besenyei, G., Wang, A.Y., Durig, J.R. 1993. *Spectrochim. Acta A*, 49: 2007– 2026.
- Kleinman, D.B. 1962. *Phys. Rev.*, 126: 1977–1979.
- Lee, C., Yang, W., Parr, R.G. 1988. *Phys. Rev. B*, 37: 785–789.
- Pihlaja, K., Kleinpeter, E. (Eds), Carbon-13 chemical shifts in structural and stereo chemical analysis, VCH Publishers, Deerfield Beach, FL.
- Polavarapu, P.L. 1990. J. Phys. Chem., 94: 8106–8112.
- Pulay, P., Fogarasi, G., Pongor, G., Boggs, J.E., Vargha, A. 1983. J. Am. Chem. Soc., 105: 7037–7047.

- Pulay, P., Zhou, X., Fogarasi, G., Fransto, R. (Eds). 1993. NATO AS Series, Vol. C, 406, Kluwer, Dordrecht. Pp. 99.
- Rauhut, G., Pulay, P. 1995. J. Phys. Chem., 99: 3093–3100.
- Sathyanarayan, D.N., Vibrational spectroscopy—theory and applications, 2<sup>nd</sup> edn. New Age International (P) Limited Publishers, New Delhi.
- Shin, D.N., Hahn, J.W., Jung, K.H., Ha, T.K., Raman, J. 1998. *Spectrosc*, 29: 245.
- Silverstein, M., Clayton Bassler, G., Morril, C. 1981. Spectroscopic identification of organic compounds. John Wiley, New York.
- Socrates, G. 2001. Infrared and Raman characteristic group frequencies— Tables and Charts, 3<sup>rd</sup> edn. Wiley, New York.
- Sundius, T. 1990. J. Mol. Struct., 218: 321– 326.
- Sundius, T. 2002. Vib. Spectrosc., 29: 89– 95.
- Varsanyi, G. 1969. Vibrational spectra of benzene derivative. Academic Press, New York.
- Varsanyi, G. 1974. Assignments of vibrational spectra of seven hundred benzene derivatives, Vols. 1–2, Adam Hilger.
- Vijayakumar, T., Joe, H., Nair, C.P.R., Jayakumar, V.S. 2008. *Chem. Phys.*, 343: 83.
- Wang, Y., Saebar, S., Pittman, C.U. 1993. J. Mol. Struct. Theochem., 281: 91–98.
- Wilson,E.B., Decius, J.C., Cross, P.C. 1980. Molecular vibrations, Dover Publ. Inc., NewYork.
- Wolinski, K., Hinton, J.F., Pulay, P. 1990. J. Phys. Chem. Soc., 112: 8251.
- Ziegler, T. 1991. Chem. Rev., 91: 651.